Adaptive LIDAR Vision System for Advanced Robotics, Phase I

Completed Technology Project (2014 - 2014)

Project Introduction

Advanced robotic systems demand an enhanced vision system and image processing algorithms to reduce the percentage of manual operation required. Unstructured environments, whether man-mad (e.g., International Space Station) or natural (e.g., Mars), present significant challenges to supervised autonomy or fully autonomous systems - advanced perception sensors and associated software are required. This will be particularly important both for future long duration exploration missions where the transmit (Tx) / receive (Rx) delay will be substantial and a high degree of autonomy will be required to maximize science gain, as well as for telerobotic systems where a human operator is IVA and advanced operations in a short timeline are desired. No solution currently exists for small robotic platforms. Honeybee Robotics proposes to develop a compact, wide-angle, Light Detection and Ranging (LIDAR) system that is able to detect dynamic changes in the field of view (FOV) and focus the laser scan pattern centered on the area of interest while maintaining a lower-resolution fixed FOV for robotic path planning, navigation, inspection, and identification tasks.

Primary U.S. Work Locations and Key Partners

Adaptive LIDAR Vision System for Advanced Robotics Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Adaptive LIDAR Vision System for Advanced Robotics, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
Honeybee Robotics,	Lead	Industry	Pasadena,
Ltd.	Organization		California
Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Primary U.S. Work Locations		
California	New York	

Project Transitions

0

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137422)

Images

Project Image

Adaptive LIDAR Vision System for Advanced Robotics Project Image (https://techport.nasa.gov/imag e/125968)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Honeybee Robotics, Ltd.

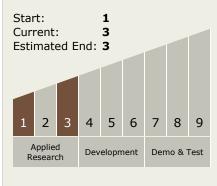
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Jason Herman

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Adaptive LIDAR Vision System for Advanced Robotics, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

• TX10 Autonomous Systems

☐ TX10.1 Situational and

Self Awareness

☐ TX10.1.1 Sensing and Perception for Autonomous Systems

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

